

Année Universitaire 2012-2013 SESSION 1

MASTER 1

ADVANCED CALCULUS

(durée 1h30)

J. P. IBRAHIM

Lundi 13 mai 2013 ~ 14h00 - 15h30

Exercice 1. Let $a:I\to\mathbb{R}$ be a continuous function and let y be a solution of the following linear differential equation

$$y' = a(t)y$$
 (E)

- a) Show that $(\exists t \in I; \ y(t) = 0 \iff y(t) = 0, \ \forall t \in I)$.
- b) Deduce that $(\exists t \in I; \ y(t) > 0 \iff y(t) > 0, \ \forall t \in I)$.

Exercice 2. We consider, for $t \in]0, +\infty[$, the following differential equation

$$y'' - \frac{3}{t}y' + \frac{4}{t^2}y = t \quad (E)$$

- a) Check that $y_1: t \to t^2$ is a solution of the homogeneous equation (E_0) .
- b) Show, using the Lagrange method, that $y_2: t \to t^2 \ln(t)$ is an independent of y_1 solution of (E_0) .
- c) Use the Wronskian method to find the explicit form of all solutions of (E).

Exercice 3. Let (S) be the following non-linear system

$$\begin{cases} x' = y \\ y' = 4\sin(x) - 3y \end{cases}$$

- a) Find the equilibrium points of (S).
- b) Solve the linearized system around (0,0) and $(\pi,0)$ and draw the corresponding trajectories.
- c) Are the points (0,0) and $(\pi,0)$ hyperbolic equilibria of (S)? Justify your answer
- d) Does the point (0,0) a stable equilibrium of (S)? Explain.
- e) Does the point $(\pi, 0)$ an asymptotically stable equilibrium of (S)? Explain.

Barème indicatif: ex 1:4 points. ex 2:8 points. ex 3:8 points.